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Trials have demonstrated the preventability of type 2 diabetes through lifestyle modifications or drugs in people
with impaired glucose tolerance. However, alternative ways of identifying people at risk of developing diabetes are
required. Multivariate risk scores have been developed for this purpose. This article examines the evidence for
performance of diabetes risk scores in adults by 1) systematically reviewing the literature on available scores and
2) their validation in external populations; and 3) exploring methodological issues surrounding the development,
validation, and comparison of risk scores. Risk scores show overall good discriminatory ability in populations for
whom they were developed. However, discriminatory performance is more heterogeneous and generally weaker in
external populations, which suggests that risk scores may need to be validated within the population in which they
are intended to be used. Whether risk scores enable accurate estimation of absolute risk remains unknown; thus,
care is needed when using scores to communicate absolute diabetes risk to individuals. Several risk scores predict
diabetes risk based on routine noninvasive measures or on data from questionnaires. Biochemical measures, in
particular fasting plasma glucose, can improve prediction of such models. On the other hand, usefulness of genetic
profiling currently appears limited.

diabetes mellitus, type 2; predictive value of tests; risk assessment; ROC curve; sensitivity and specificity

Abbreviations: ARIC, Atherosclerosis Risk in Communities; aROC, area under the receiver operating characteristic curve; EPIC,
European Prospective Investigation into Cancer and Nutrition.

INTRODUCTION

Type 2 diabetes is associated with increased risk of car-
diovascular disease and premature mortality and is the lead-
ing cause of blindness, kidney failure, and nontraumatic
amputations resulting from microvascular complications.
The preventability or delay of onset of diabetes by lifestyle
modifications that primarily promote weight loss or by phar-
maceutical intervention has been demonstrated in random-
ized trials (1–5), prompting several countries to implement
national diabetes programs (6) and to develop guidelines
for diabetes prevention (7). However, to reduce costs,
individual-level intervention programs are typically targeted
at individuals at high risk of developing diabetes. To date,
diabetes prevention trials included people with impaired
glucose tolerance, who can be identified only by conducting
an oral glucose tolerance test (8). Mass population screening
by oral glucose tolerance test may be less feasible to identify
people who might benefit from health promotion interven-

tions. Screening by oral glucose tolerance test targeted to
populations at risk of diabetes, however, would probably
increase the yield and economic efficiency of screening
(9). Thus, finding simpler, more pragmatic methods to
identify individuals at high risk of progression to diabetes
and who might benefit from targeted prevention is an
important goal.

Multivariate risk scores have been developed in recent
years to predict diabetes risk for healthy individuals, and
such risk scores are recommended in current practice guide-
lines for diabetes prevention (10) and are implemented in
prevention programs in some Western countries (11–14).
However, although diabetes risk prediction models have
been reviewed before (15), a systematic review of models
and their performance is currently lacking.

Diabetes risk scores may serve varying purposes, which
has implications for evaluating their validity (16). For ex-
ample, to target prevention interventions to those at greatest
risk, the risk score would need to accurately rank individuals
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according to their absolute risk but would not necessarily
need to provide accurate estimates of absolute risk. How-
ever, in many circumstances, risk scores will need to provide
prognostic information and accurate estimation of the likely
absolute benefit from an intervention for cost-benefit
analyses. Here, a precise computation of absolute risk is
important. Furthermore, the decision of an individual to
participate in an intervention program may be influenced
by providing information on the expected benefit of the in-
tervention program. Here again, accurate information on
absolute risk is necessary but should primarily be based
on modifiable risk factors.

In this review, we provide results from a systematic liter-
ature search on risk scores that have been developed or
evaluated in general populations to predict future diabetes.
Secondly, we assess whether risk scores developed and val-
idated in one cohort perform equally well in other cohorts.
Finally, we explore methodological issues surrounding the
development, validation, and comparison of diabetes risk
scores.

METHODS

Search strategy

A comprehensive literature search for studies on diabetes
risk prediction tools was performed using PubMed, Web of
Science, and Cochrane Reviews from database inception
until December 31, 2009. The search strategy focused
on 4 key elements: type 2 diabetes, risk assessment/score/
prediction, specific names of known risk scores, and pro-
spective studies (refer to Web Table 1, the first of 5 supple-
mentary tables posted on the Epidemiologic Reviews Web
site: http://epirev.oxfordjournals.org). We also screened the
reference lists of papers identified from the initial electronic
search. No language restriction was applied.

Selection criteria

We included studies reporting diabetes risk assessment
tools or scores that 1) were derived from or validated in
prospective cohort studies, 2) were derived in the general
adult population and were evaluated for individuals without
diabetes at baseline, and 3) reported a measure of perfor-
mance of the risk score for predicting incident diabetes. We
excluded studies that 1) derived or validated diabetes risk
scores for the general adult population but did not evaluate
them for individuals without diabetes; 2) derived or evalu-
ated risk prediction tools other than score-type tools, such as
those using fasting plasma glucose or 2-hour glucose during
oral glucose tolerance testing alone; and 3) evaluated fewer
than 3 risk factors. If scores and their evaluation were re-
ported in multiple papers, we included the score only once
by selecting the paper that reported the most information on
predictive ability.

Data extraction

Two authors (B. B. and M. B. S.) independently reviewed
the results from the primary search of titles, followed by the

abstract and full paper searches (Figure 1). A form was used
to extract data on the performance of the risk scores in
a standardized manner for all articles. Included were the
name of the risk score and study; country and setting; details
on derivation and validation populations; follow-up for der-
ivation and validation cohorts; definition of diabetes; risk
factors included in the scores; and measures of performance,
including discrimination, calibration, sensitivity, specificity,
and positive and negative predictive values. We also ex-
tracted data from original studies if no information on the
development or validation of risk scores was available in the
articles identified in the initial search. Information was gath-
ered from tables and figures as well as the text of manu-
scripts. When the reviewers disagreed with regard to the
extracted models and details of performance, consensus
was reached through discussion.

Measures of model performance

Measures of discrimination. Receiver operating charac-
teristic (ROC) curves are frequently used to evaluate the
discriminatory accuracy of diagnostic or screening markers.
This curve plots the sensitivity of a test against its false-
positive rate across all possible values. The area under the
ROC curve (aROC or C statistic) is commonly reported as
a summary measure. It gives the probability that the pre-
dicted risk for a participant with an event is higher than that
for a participant without an event. An aROC of 0.5 reflects
a random guess (null hypothesis), whereas an aROC of 1.0
represents perfect discrimination. ROC curves do not

Articles retrieved from literature search (n = 5,220) 

Abstracts checked (n = 514) 

Full papers checked (n = 62) 

Articles retrieved from literature search (n = 40) 

Papers finally included (n = 56) 

Duplicates excluded (n = 516) 

Excluded on the basis of title (n = 4,190) 

Excluded on the basis of abstract review (n = 452) 

Excluded on the basis of full text review (n = 22) 

Additional papers identified from reference lists (n = 16) 

Figure 1. Identification of studies included in the review.
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provide information about actual risks that the models pre-
dict or about the proportion of participants who have high-
risk or low-risk values. Furthermore, for clinical or public
health decision making, measuring classification accuracy
(17) for a subset of meaningful thresholds for high risk
might be more informative than the overall aROC.

Measures of calibration. Calibration measures the extent
to which the model-predicted probability of an event for
a person with a specified predictor value is the same as or
very close to that for the proportion of all people in the
population with those same predictor values who experience
the event. For continuous predictors, people are commonly
placed in categories of predicted risk, and the category
values are compared with the observed event rates for
participants in each category. More formally, the Hosmer-
Lemeshow test compares observed event rates with average
predicted risks, typically using deciles for categories of pre-
dicted risk, with statistically significant P values indicating
lack of calibration (18). Note that the P value of the Hosmer-
Lemeshow test is highly influenced by sample size and
grouping (deciles vs. others).

Measures of overall model fit. Overall model fit can be
assessed by using Nagelkerke R2, which is analogous to
the percentage of variation explained for linear models.
Nagelkerke R2 is the fraction of the log-likelihood
explained by the predictors in the model, adjusted to
a range of 0–1 (19). The Bayes Information Criterion is
the value of the log-likelihood with an added penalty for
the number of variables in the model; a lower number
indicates a better fit (19).

Risk stratification and reclassification assessment. It has
been suggested that it is necessary to evaluate performance
of a prediction model in terms of its capacity to stratify the
population into clinically relevant risk categories (17). The
main assumption is that a better model would place more
participants at the extremes of the risk distribution, with
the upper category having clear implications for preventive
interventions. It has further been suggested that the contri-
bution of new markers to the performance of prediction
models should also be evaluated based on risk stratification
(17, 19, 20). ROC curves have been criticized in this con-
text because they require a strong ‘‘independent’’ associa-
tion of a new marker with the outcome to meaningfully
increase aROCs compared with a model containing stan-
dard risk factors that already allow reasonably good dis-
crimination (21).

The method of reclassification groups predicted risk esti-
mates into clinically relevant categories and cross-classifies
these categories for 2 different, but nested prediction
models. In addition, event rates within categories of pre-
dicted risk before and after reclassification are frequently
compared. The net reclassification improvement and the in-
tegrated discrimination improvement are statistical mea-
sures to quantify and test the statistical significance of the
improvement in risk classification (21). Whether net reclas-
sification improvement and integrated discrimination im-
provement are indeed more sensitive than the C statistic to
detect small improvements in discrimination remains
largely unknown thus far. We previously reported that im-
provement in discrimination by glycated hemoglobin

(HbA1c) over the Framingham prediction model for coro-
nary heart disease was significant comparing C statistics but
not using net reclassification improvement (22) and that
even small improvements in discrimination were reflected
in C statistics, largely mirrored by the integrated discrimi-
nation improvement (23). Thus, despite recent statistical
advances, there are still unanswered questions on how to
best evaluate risk prediction models.

RESULTS

Our electronic search yielded 4,704 potentially relevant
papers (Figure 1). After reviewing the titles and abstracts,
514 references remained; after further review of full texts,
40 articles from the literature search reporting the predictive
performance of diabetes risk scores or models met the in-
clusion criteria. Reasons for exclusion of articles based on
the review of full texts (24–45) are given in Web Table 2.
The review of reference lists revealed 16 additional refer-
ences; 3 of these studies derived prediction models cross-
sectionally (46–48). However, because these risk scores
have been evaluated in other prospective studies meeting
inclusion criteria, we included the studies to describe the
prediction scores. Thus, a total of 56 references were in-
cluded in our review.

Development of risk scores

We identified 46 studies that derived risk prediction
models for diabetes. Table 1 summarizes 10 studies (46–
55) that developed risk prediction models and the perfor-
mance of these models in external cohorts (47, 51, 53,
55–74). A more detailed description of study characteristics
and model performance is given in Web Tables 3 (internal
performance) and 4 (external performance). The other 36
studies reporting models not yet externally validated (23,
58, 59, 61–63, 65, 66, 68, 72–98) are described inWeb Table
5. Of the total of 46 studies, the vast majority were carried
out in either North American or European study popula-
tions. A few reports were based on Asian (48, 58, 61, 81,
83, 98) populations, and only single reports were identified
for study populations from Mauritius (74) and Australia
(65). Cohort size ranged from 492 (88, 97) to 3,773,585
(62) and follow-up time from 3 years (58) to 28 years
(89). Most studies included men and women, with the
exception of 5 studies (49, 80, 93, 94, 98) that included
men only. The majority of risk scores incorporated classic
diabetes risk factors, such as age, sex, measures of obesity,
family history of diabetes, and blood pressure status.

Prediction models including noninvasive measures
only. Seventeen studies evaluated risk models involving
noninvasively measured variables. The aROCs for these
models generally ranged from 0.7 to 0.8 (52, 54, 55, 58,
59, 63, 68, 81, 84, 91, 94, 96). A few studies reported aROCs
of <0.7 (48, 61, 91, 92), with risk models involving 3–4
variables. Only 2 studies reported aROCs of >0.8 in the
derivation cohorts. The Finnish Diabetes Risk Score was
based on the FINRISK studies and includes information
on age; body mass index; waist circumference; history of
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Table 1. Diabetes Risk Scores Developed in Populations Sampled Primarily From the General Population and Validated in External

Populationsa

First Author, Year
(Reference No.)

Population, Country Variables Included in the Risk Scoreb Discriminationc

Atherosclerosis Risk in Communities Study Diabetes Risk Score, United States

Schmidt, 2005 (52) Atherosclerosis Risk in
Communities study,
United States

Clinical model: age, ethnicity, parental history,
systolic BP, WC, height

0.71

Clinical model þ fasting glucose 0.78

Clinical model þ fasting glucose,
triglycerides, HDL cholesterol

0.80

Metabolic syndromeNational Cholesterol
Education Program–Third Adult Treatment
Panel definition (1 point for each highWC,
high triglycerides, lowHDL cholesterol, high
BP/antihypertensive use, high fasting glucose)

0.75

Augmented metabolic syndrome
(1 point for each high WC, high
triglycerides, low HDL cholesterol,
high BP/antihypertensive use;
2 points for fasting glucose
�5.6 mmol/L or 5 points for fasting
glucose �6.1 mmol/L); 1 point for
BMI �30 kg/m2)

0.78

Validation in external populations:

Mainous, 2007 (56) Coronary Artery Risk in
Young Adults,
United States

Augmented metabolic syndrome: WC,
triglycerides, HDL cholesterol,
hypertension, fasting glucose,
BMI (6/6)

0.70

Stern, 2008 (57) San Antonio Heart Study,
United States

Not reported in detail 0.870

Sun, 2009 (58) MJ Longitudinal health-
check-up-based
Population Database,
Taiwan

Age, ethnicity, family history, fasting
glucose, systolic BP, WC, height (7/7)

0.84

Age, ethnicity, family history, fasting
glucose, systolic BP, WC, height,
triglycerides, HDL cholesterol (9/9)

0.84

Sun, 2009 (58) MJ Longitudinal health-
check-up-based
Population Database,
Taiwan

Age, ethnicity, family history, fasting
glucose, systolic BP, WC,
height (7/7)

0.83

Age, ethnicity, family history, fasting
glucose, systolic BP, WC, height,
triglycerides, HDL cholesterol (9/9)

0.83

Cambridge Diabetes Risk Score, United Kingdom

Griffin, 2000 (46) Population from general
practices, United
Kingdom

Model for predicting undiagnosed
diabetes: age, sex, BMI, smoking
status, corticosteroid use,
antihypertensive use, family history

Independent sample: 0.80

Validation in external populations:

Simmons, 2007 (59) EPIC-Norfolk, United
Kingdom

Age, sex, prescribed antihypertensive
medication, prescribed steroids,
BMI, family history of diabetes,
smoking (7/7)

0.76

Rahman, 2008 (60) EPIC-Norfolk, United
Kingdom

Age, sex, family history, smoking,
prescribed antihypertensive medication,
prescribed steroids, BMI (7/7)

0.745

Chien, 2009 (61) Cohort, China Not reported 0.581

Hippisley-Cox, 2009 (62) Cohort from general
practices, United
Kingdom

Age, sex, BMI, smoking status,
corticosteroid use, antihypertensive
use, family history (7/7)

Men: 0.801; women: 0.813

Table continues
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Table 1. Continued

First Author, Year
(Reference No.)

Population, Country Variables Included in the Risk Scoreb Discriminationc

Data From an Epidemiological Study on the Insulin Resistance Syndrome Diabetes Risk Score, France (55)

Balkau, 2008 (55) Data from an
Epidemiological Study
on the Insulin
Resistance syndrome,
France

Men: Clinical prediction model—
current smoking, WC, hypertension

0.733

Men: Clinical and biologic model—
current smoking, WC, fasting
glucose, fasting glucose squared,
gamma-glutamyltransferase

0.850

Men: above variables þ risk alleles
for transcription factor 7-like 2
and interleukin 6

0.851

Men: Integer clinical risk score of
WC, current smoking, hypertension

0.713

Women: Clinical prediction
model—family history,
WC, hypertension

0.839

Women: Clinical and biologic
model—family history, BMI,
fasting glucose, fasting
glucose squared, triglycerides

0.917

Women: above variables þ risk
alleles for transcription factor
7-like 2 and interleukin 6

0.912

Women: integer clinical risk
score of WC, family history,
hypertension

0.827

Validation in external populations:

Kahn, 2009 (63) Atherosclerosis Risk
in Communities study,
United States

WC, hypertension, current
smoker (men), family history
(women) (3/3)

0.66

Finnish Diabetes Risk Score, Finland (51)

Lindström, 2003 (51) FINRISK, Finland Concise model: age, BMI, WC,
history of antihypertensive use,
previous diabetes

0.857

Full model: concise model þ
physical inactivity, fruit and
vegetable intake

0.860

Score model: age, BMI, WC,
antihypertensive use, previous
diabetes, physical activity, fruit
and vegetables intake

0.852

Validation in external populations:

Lindström, 2003 (51) FINRISK, Finland Full model: age, BMI, WC,
antihypertensive use, previous
diabetes, physical activity,
fruit and vegetables intake (7/7)

0.87

Alssema, 2008 (64) Hoorn Study, the
Netherlands

Concise model: age, BMI, WC,
antihypertensive medication,
previous diabetes, family
history (6/5); an extra age
category of �65 years created
and includes family history

0.71

Alssema, 2008 (64) Prevention of renal and
vascular end-stage
disease study, the
Netherlands

Concise model: age, BMI, WC,
antihypertensive medication,
previous diabetes, family
history (6/5); an extra age
category of �65 years created
and includes family history

0.77

Table continues
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Table 1. Continued

First Author, Year
(Reference No.)

Population, Country Variables Included in the Risk Scoreb Discriminationc

Alssema, 2008 (64) Monitoring Project on
Chronic Disease
Risk Factors Study,
the Netherlands

Concise model: age, BMI, WC,
antihypertensive medication,
previous diabetes, family
history (6/5); an extra age
category of �65 years created
and includes family history

0.71

Balkau, 2008 (55) Data from an
Epidemiological Study
on the Insulin
Resistance syndrome,
France

Full model: age, BMI, WC,
antihypertensive medication,
physical activity (5/7); excludes
previous diabetes and diet

Men: 0.678; women: 0.809

Cameron, 2008 (65) Australian Diabetes,
Obesity and Lifestyle
Study, Australia

Deviations from the full original
score: includes parental history,
activity excludes occupational
activity

0.727

Abdul-Ghani, 2009 (66) Botnia Study, Finland Concise model: age, BMI, WC,
use of hypertensive medications,
family history (5/5); excludes
prevalent diabetes, includes
family history

0.646

Framingham Offspring Diabetes Risk Score, United States

Wilson, 2007 (54) Framingham Offspring
Study, United States

Personal model: age, sex, parental
history, BMI

0.724

Simple clinical model with categorical
variables: age, sex, parental history,
BMI, WC, fasting glucose, HDL
cholesterol, triglycerides, hypertension

0.852 (repeated random
samples: 0.73–0.91)

Simple point score system: parental
history, BMI, fasting glucose, HDL
cholesterol, triglycerides, hypertension

0.850

Simple clinical model with continuous
variables: age, sex, parental history,
BMI, systolic BP, WC, fasting
glucose, HDL cholesterol, triglycerides

0.881

Complex clinical model: age, sex, parental
history, BMI, WC, fasting glucose, HDL
cholesterol, triglyceride, hypertension,
2-hour glucose, fasting insulin,
C-reactive protein

0.854

Best biologic model: complex clinical
model þ hormone therapy, current
smoking, alcohol intake, aspirin or
nonsteroidal antiinflammatory drug use,
glycated hemoglobin, homeostatic model
assessment of insulin resistance, Gutt
insulin sensitivity index, homeostatic
model assessment beta-cell index

0.869

Validation in external populations:

Li, 2007 (67) Cohort, Germany Reestimated simple clinical model: age,
sex, family history, BMI, hypertension,
HDL cholesterol, triglycerides, fasting
glucose (8/9); excludes WC

0.86 (validated: 0.828)

Lyssenko, 2008 (68) Malmö Preventive
Project, Sweden

Personal model: age, sex, family history,
BMI (4/4)

Categorical 0.69;
continuous 0.707

Simple clinical model with categorical
variables: age, sex, family history,
BMI, BP, triglycerides, fasting
glucose (7/9); excludes WC, HDL
cholesterol

Categorical 0.729;
continuous: 0.743

Lyssenko, 2008 (68) Botnia Study, Finland Personal model: age, sex, family history,
BMI (4/4)

Categorical: 0.736;
continuous: 0.769

Table continues
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Table 1. Continued

First Author, Year
(Reference No.)

Population, Country Variables Included in the Risk Scoreb Discriminationc

Simple clinical model with categorical
variables: age, sex, family history,
BMI, BP, triglycerides, fasting
glucose (7/9); excludes WC, HDL
cholesterol

Categorical: 0.755;
continuous: 0.786

Nichols, 2008 (69) Kaiser Permanente
Northwest, United
States

Family history used as proxy for
parental history

Personal model: age, sex, parental history,
BMI (4/4); reestimated

0.676

Simple clinical model with categorical
variables: age, sex, parental history,
BMI, fasting glucose, HDL cholesterol,
triglycerides, hypertension (8/9);
reestimated model excludes WC

0.824

Simple clinical model with continuous
variables: age, sex, parental history,
BMI, fasting glucose, HDL cholesterol,
triglycerides, hypertension (8/9);
reestimated model excludes WC

0.840

Simple point score system: parental history,
BMI, fasting glucose, HDL cholesterol,
triglycerides, hypertension (6/6)

Not reported

Chien, 2009 (61) Cohort, China Not reported 0.662

Kahn, 2009 (63) Atherosclerosis Risk
in Communities study,
United States

Simple point score: fasting glucose,
BMI, HDL cholesterol, parental diabetes,
triglycerides, hypertension (6/6)

0.76

German Diabetes Risk Score, Germany

Schulze, 2007 (53, 99) EPIC-Potsdam, Germany Full model: age, WC, height, hypertension,
physical activity, smoking, and
consumption of whole-grain bread, red
meat, coffee, moderate alcohol

0.84

Simplified model with categorical variables:
age, WC, height, hypertension, physical
activity, smoking, and consumption of
whole-grain bread, red meat, coffee,
moderate alcohol

0.83

Validation in external populations:

Schulze, 2007 (53) EPIC-Heidelberg, Germany Full model: age, WC, height, hypertension,
physical activity, smoking, and
consumption of whole-grain bread, red
meat, coffee, moderate alcohol (10/10)

0.82

Indian Diabetes Risk Score, India

Mohan, 2005 (48) Chennai Urban Rural
Epidemiology Study,
India

Model for predicting undiagnosed
diabetes: age, WC, family
history, physical activity

0.698

Validation in external populations:

Mohan, 2008 (70) Chennai Urban Population
Study, India

Age, WC, family history, physical
activity (4/4)

Not reported

Prospective Cardiovascular Münster Diabetes Risk Score, Germany (49)

von Eckardstein, 2000 (49) Prospective
Cardiovascular Münster
Study, Germany

Age, BMI, fasting glucose, HDL
cholesterol, family history,
hypertension

0.793

Validation in external populations:

Chien, 2009 (61) Cohort, China Not reported 0.631

Rancho Bernardo Diabetes Risk Score, United States

Kanaya, 2005 (47) Rancho Bernardo Study,
United States

Model for predicting persons with
2-hour glucose �140 mg/dL:
sex, age �70 years, triglycerides
�150 mg/dL, fasting glucose

Continuous: 0.73;
categorical:
0.71; score
points: 0.70

Table continues
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hypertension medication use; history of prevalent/latent di-
abetes; physical activity; and consumption of fruits, vegeta-
bles, and berries (aROC for integer point score: 0.85) (51).
The study focused on drug-treated diabetes as the outcome;

thus, cases who did not use medication were not excluded at
baseline and were not identified as incident cases during
follow-up. The German Diabetes Risk Score (aROC: 0.84)
was derived from the European Prospective Investigation

Table 1. Continued

First Author, Year
(Reference No.)

Population, Country Variables Included in the Risk Scoreb Discriminationc

Validation in external populations:

Kanaya, 2005 (47) Health, Aging and Body
Composition Study,
United States

Sex, age, triglycerides, fasting
glucose (4/4)

0.71

Abdul-Ghani, 2009 (66) Botnia Study, Finland Sex, age, triglycerides, fasting
glucose (4/4)

0.74

San Antonio Diabetes Risk Score, United States

Stern, 2002 (50) San Antonio Heart Study,
United States

Clinical model: age, sex, ethnicity,
BMI, family history, systolic BP,
HDL cholesterol, fasting glucose

0.84

þ 2-hour glucose 0.85

Full model: age, sex, ethnicity, BMI,
family history, systolic BP,
diastolic BP, HDL cholesterol,
fasting glucose, total cholesterol,
low density lipoprotein cholesterol,
triglycerides

0.85

þ 2-hour glucose 0.86

Validation in external populations:

McNeely, 2003 (71) Japanese American
Community Diabetes
Study, United States

Clinical model with original weights:
age, sex, ethnicity, fasting glucose,
systolic BP, HDL cholesterol, BMI,
family history (8/8)

After 5–6 years: 0.755;
after 10 years: 0.790

Reestimated clinical model: age, sex,
ethnicity, fasting glucose, systolic BP,
HDL cholesterol, BMI, family history (8/8)

After 5–6 years: 0.789;
after 10 years: 0.807

Hanley, 2004 (72) Insulin Resistance
Atherosclerosis Study,
United States

Age, sex, fasting glucose, systolic BP,
HDL cholesterol, BMI, parental or sibling
history of diabetes, ethnicity and clinical
site (9/8); weighting not reported

0.785

Stern, 2004 (73) Mexico City Diabetes Study,
Mexico

Not reported in detail 0.765

San Antonio model with metabolic
syndrome (National Cholesterol
Education Program-Third Adult
Treatment Panel definition: �3
of the following—high WC, high
triglycerides, low HDL cholesterol,
high BP/antihypertensive use,
high fasting glucose)

0.768

Cameron, 2007 (74) Mauritius Study, Republic
of Mauritius

Not reported in detail Graphic display

Cameron, 2008 (65) Australian Diabetes,
Obesity and Lifestyle
Study, Australia

Reestimated clinical model (71):
age, sex, ethnicity, fasting glucose,
systolic BP, HDL cholesterol, BMI,
family history (8/8); family history
includes parental history only

0.783

Abdul-Ghani, 2009 (66) Botnia Study, Finland Age, sex, ethnicity, BMI, BP, fasting
glucose, triglycerides, HDL
cholesterol (8/8)

0.743

Chien, 2009 (61) Cohort, China Not reported 0.675

Abbreviations: BMI, body mass index; BP, blood pressure; EPIC, European Prospective Investigation into Cancer and Nutrition; HDL, high

density lipoprotein; WC, waist circumference.
a Ordered by risk score.
b Values in parentheses indicate number/total number of original variables in the validations.
c Area under the receiver operating characteristic curve.
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into Cancer and Nutrition (EPIC)-Potsdam Study and in-
cludes information on age; waist circumference; height;
history of hypertension; physical activity; and consumption
of alcohol, coffee, whole grains, and red meat (53). This
score was modified by categorizing variables to create an
integer point score that had a slightly lower discriminatory
ability (aROC: 0.83) (99).

Prediction models including biochemical measures. Models
that include metabolic syndrome factors. Several prediction
models have been proposed that include biochemical measures
along with noninvasively measured variables. Studies have
evaluated sensitivities, specificities, and predicted values for
varying definitions of the metabolic syndrome (reviewed by
Ford et al. (100)). ROC curves were reported in 7 studies, with
the areas under the curve ranging from 0.68 to 0.85 (52, 74,
77, 78, 80, 97, 101). Some studies have evaluated models with
the metabolic syndrome in addition to basic noninvasive pa-
rameters (66, 73, 78, 85–87). Although definitions of the met-
abolic syndrome vary, they generally include concentrations
of blood lipids (high density lipoprotein cholesterol, triglycer-
ides) and plasma glucose (either fasting or 2-hour) along with
blood pressure and waist circumference. These biochemical
parameters have also been evaluated in several other studies.

Biochemical markers to improve model performance
based on noninvasively measured risk factors could be par-
ticularly useful if diabetes risk screening involves a multi-
step procedure, with simple questionnaires or noninvasive
information at the start and more costly measurement of
biochemical indicators in prescreened individuals during
a second step. This process has rarely been assessed, how-
ever. In the Atherosclerosis Risk in Communities (ARIC)
study, the aROC increased from 0.71 to 0.80 (P < 0.001)
when fasting plasma glucose and lipids were added to non-
invasively measured variables (52). Similarly, systolic blood
pressure, fasting glucose, high density lipoprotein choles-
terol, and triglycerides increased the aROC from 0.72 to
0.85 (P value not reported) after they were added to a model
that included age, sex, family history, and body mass index
in the Framingham Offspring Study (54). Improvements in
discrimination were also observed in a Thai population (81).
The German Diabetes Risk Score improved with inclusion
of additional measurements of fasting glucose, glycated he-
moglobin, triglycerides, high density lipoprotein choles-
terol, and liver enzymes (aROC: 0.90 vs. 0.85, P < 0.001)
(23).

Models containing measures of glucose and insulin
control. Considerable attention has been paid to whether
more sophisticated indexes of glucose and insulin control,
for example, homeostasis model assessment and measures
of insulin secretion and resistance from oral glucose
tolerance tests, would improve prognostic ability. In the
Framingham Offspring Study, the aROC did not improve
over and above a model including noninvasively measured
characteristics, fasting glucose, and lipids (54). Similarly,
exchanging fasting glucose and lipids for measures of
insulin secretion obtained from oral glucose tolerance
tests yielded conflicting results in the Malmö Preventive
Project and the Botnia Study (68). Fasting insulin did not
appreciably increase the aROC in the ARIC study (52).
However, adding 2-hour glucose (50) or 1-hour plasma

glucose and insulin secretion/insulin resistance index
based on the oral glucose tolerance test (82) to the San
Antonio Heart Study model improved the aROC (0.86 vs.
0.84, P ¼ 0.02 and 0.86–0.87 vs. 0.80, P < 0.001, respec-
tively). Furthermore, adding impaired glucose tolerance
to a noninvasive model yielded a slightly higher aROC
(aROC: 0.78) compared with using impaired fasting glucose
(aROC: 0.76) in a Thai population, although the statistical
significance of this difference was not reported (81).

Models containing novel biomarkers. Other biochemi-
cal markers, although associated with diabetes risk, have
rarely been investigated with regard to diabetes prediction.
C-reactive protein did not improve discrimination beyond
the metabolic syndrome in the Insulin Resistance Athero-
sclerosis study (78) or beyond the Framingham Offspring
Study model (54). Similarly, in the EPIC-Potsdam Study, C-
reactive protein did not add prognostic information beyond
a more extended prediction model that includes the German
Diabetes Risk Score, plasma glucose, glycated hemoglobin,
triglycerides, high density lipoprotein cholesterol, and liver
enzymes (23). Notably, liver enzymes—along with concen-
trations of blood lipids—significantly improved discrimina-
tion beyond the noninvasively measured variables and
measures of glycemia in the EPIC-Potsdam Study (P ¼
0.002) (23). A risk score from Taiwan includes white blood
cell count, although the overall discriminatory accuracy of
the derived score was relatively low (61).

Plasma adiponectin concentrations, although strongly
and consistently associated with a lower diabetes risk in
prospective studies (102), only marginally improved dis-
crimination beyond the German Diabetes Risk Score with
standard biochemical variables in the EPIC-Potsdam
Study (aROC: 0.902 vs. 0.900, P¼ 0.047) (23). Adiponectin
was 1 of 6 biomarkers (besides C-reactive protein, ferritin,
interleukin-2-receptor, fasting plasma glucose, insulin)
selected for a biomarker risk score in the Inter99 cohort
(96). The aROC was 0.78 and increased to 0.79 (P ¼
0.059) when family history, age, body mass index, and waist
circumference were added.

Prediction models involving genetic information. Few
prospective studies have investigated the value of multiple
genetic variants in type 2 diabetes prediction (23, 55, 68, 79,
89, 92, 94). Only a small number of single nucleotide poly-
morphisms were tested in 2 of these studies, yielding no
improvement in discrimination of type 2 diabetes beyond
noninvasively measured characteristics (55, 79). Multiple
single nucleotide polymorphisms only marginally improved
discrimination beyond age, sex, and noninvasive character-
istics in the Malmö Preventive Project and Botnia Study
(68), the Framingham Offspring Study (89), the Rotterdam
Study (92), the Health Professionals Follow-up Study (94),
and the EPIC-Potsdam Study (23).

Validation of risk scores in independent cohorts

Ten risk scores were evaluated in different validation co-
horts (Table 1, Web Table 3). The majority of validation
cohorts consisted of European populations, and sample size
varied from 100 (57) to 1,232,832 (62) individuals. The
number of incident diabetes cases varied considerably, from
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37 in a German cohort (67) to 37,535 in a British cohort
(62). Most studies identified diabetes cases by using fasting
blood glucose measurements and—less frequently—2-hour
glucose values during an oral glucose tolerance test. Some
studies used alternative strategies to identify cases, for
example, registries of medication use, clinical registers,
electronic health records, or verified self-reports (14, 51,
59, 60, 62).

Only a few studies reported complete measures of pre-
dictive performance, including discrimination, calibration
and sensitivity, specificity, and positive predicted value or
negative predicted value for potential cutoffs (14, 58, 61,
69). The majority of studies reported a measure of discrim-
ination (aROC) but lacked information on calibration. Risk
scores showed variable discriminatory power in validation
cohorts (aROC range: 0.58 (61) to 0.87 (51, 57)).

Several risk scores based solely on noninvasive measure-
ments have been validated in independent populations. The
most frequently validated score is the Finnish Diabetes Risk
Score, validated in 8 independent cohorts (51, 55, 64–66).
The discrimination was very good (aROC: 0.87) in another
Finnish study involving similar methodology compared
with the cohort study from which the score was derived
(51), but it was lower in other populations (aROC range:
0.65–0.81) (55, 64–66). These later studies included some
modifications of the risk score, in particular the addition of
family history and the omission of diet and activity as pre-
dictors, and they involved different endpoint definitions.
Calibration measures were not reported.

The Cambridge Diabetes Risk Score was initially devel-
oped to identify individuals with undiagnosed diabetes
based on information on age, sex, antihypertensive medica-
tion use, steroid use, body mass index, family history of
diabetes, and smoking status (46). It has been validated in
2 United Kingdom studies: the prospective EPIC-Norfolk
Study yielding an aROC of 0.75 (60) and in a large sample
of people recruited from general practices (aROC: 0.80
among men and aROC: 0.81 among women) (62), although
discrimination was lower in a cohort of Chinese from
Taiwan (aROC: 0.58) (61). The Framingham personal model
yielded an aROC of 0.68 in a US cohort in which coefficients
for predictors were reestimated (69). In the Malmö Preven-
tive Project and the Botnia Study, the aROCs were 0.69 and
0.74, respectively (68). The German Diabetes Risk Score
was validated in another German cohort—EPIC-Heidelberg
(aROC: 0.82) (53). Calibration analysis suggested accurate
estimation of absolute risk in this external cohort.

One model with biochemical measures that has been fre-
quently validated in independent populations is the San
Antonio Heart Study model (50). It includes information
on age, gender, ethnicity, body mass index, family history
of diabetes, systolic blood pressure, fasting glucose, and
high density lipoprotein cholesterol. The aROCs were
0.76–0.79 for Japanese Americans (71), 0.785 in the Insulin
Resistance Atherosclerosis study (72), 0.765 in the Mexico
City Diabetes Study (73), and 0.743 in the Botnia study
(66), and graphic display of the ROC curve suggests good
discrimination in the Mauritius study (74). However,
discrimination was considerably lower among Chinese in
Taiwan (aROC: 0.675) (61).

The Framingham Offspring Study clinical model (54)
includes age, sex, parental history, body mass index, waist
circumference, fasting glucose, high density lipoprotein
cholesterol, triglycerides, and hypertension. It has been
validated in several studies with differing levels of discrim-
ination; aROCs were 0.86 in a German population (67);
0.73 in the Malmö Preventive Project and 0.76 in the
Botnia Study (68); 0.84 in Kaiser Permanente Northwest
(69); 0.66 in a Chinese population (61); and 0.76 in the
ARIC study (63)).

A number of prediction models with relatively similar
components have been validated in other cohorts, for exam-
ple, the PROCAM score (61), the ARIC clinical model plus
glucose (52, 57, 58), and the Rancho Bernardo model (47,
66). Although aROCs (mostly in the range of 0.7–0.8) sug-
gest overall acceptable to good discrimination by most of
these latter scores, the vast majority of studies did not report
measures of calibration.

DISCUSSION

This systematic review shows that the predictive ability of
diabetes risk scores, which have been developed in popula-
tions of varying ethnic backgrounds, differs considerably
between populations. Several risk scores exist that enable
prediction of type 2 diabetes based on information readily
available in routine clinical practice or that can be gathered
by questionnaires.

Although collecting data from a questionnaire is likely
less costly and more acceptable than methods of screening
involving biochemical measures such as blood glucose, dif-
ficulties in distributing questionnaires, the time required to
complete them, the complexity of computing the results,
issues related to misreporting (reporting bias), and unavail-
ability of some required information may hamper their
population-wide application. Questionnaires may also
create anxiety or false reassurance.

Risk scores based entirely on routine health service data
have the advantage that all necessary information has
already been collected, but this approach may also create
false reassurance or anxiety if test results are communi-
cated to patients. Furthermore, these risk scores focus
mainly on nonmodifiable risk factors such as age and
family history or on the consequences of adverse health
behaviors such as high body mass index and waist circum-
ferences, high blood pressure, and medication use. In
addition, available risk factor information might differ
between health services.

The feasibility of implementing any screening model will
depend on the availability and completeness of the required
risk factor data (103). Furthermore, the context in which
prediction models are used may largely determine the de-
gree of complexity of their calculation. Some models in-
volve categorization of noninvasively measured variables
and do not require a calculator (51, 99) and are thus appli-
cable as paper questionnaires; other prediction models in-
volve considerable computational effort. Thus, performance
of alternative models needs to be weighed against the fea-
sibility of their application. However, current technology
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can be used to calculate more complicated risk scores. Thus,
increasing accessibility of computerized calculators (e.g.,
software applications, Web tools) may allow future devel-
opment of risk prediction tools with more emphasis on ac-
curacy than on simplicity of calculation.

Biochemical measures, in particular fasting plasma glu-
cose, can strongly improve the performance of models based
on noninvasive measures. Although other markers that
are relatively easily obtained in clinical practice—such as
high density lipoprotein cholesterol, triglyceride, and liver
enzymes—add a small increase in predictive value, there is
little evidence for less commonly measured parameters,
such as C-reactive protein or adiponectin. The overall sen-
sitivity and specificity of a simple prediction model using
routine data might exceed that of one involving a blood test
if the response rate for attendance at a blood test is low and
the routine data are available for the majority of the popu-
lation. Indeed, risk factor questionnaires (51) and risk scores
generated from data routinely available in general practice
(46) are increasingly being used to stratify populations be-
fore inviting those at high risk to undergo blood glucose
testing. Recent data from the United Kingdom suggest that
an approach of population stratification prior to inviting
people to be screened for cardiovascular disease risk factors
is likely to be more efficient than inviting all adults (104). In
the Diabetes Prevention Program, older age and higher body
mass index increased the yield of screening (105).

The usefulness of genetic profiling currently appears lim-
ited. Because the discriminative accuracy of genetic profil-
ing depends on the number of genes involved, the frequency
of the risk alleles, and the risks associated with the geno-
types (106, 107), a large number of additional common
variants with small effect sizes or rare variants with stronger
effect sizes need to be identified. Novel diabetes genes iden-
tified by genome-wide association studies, requiring tens of
thousands of cases for sufficient statistical power, confer
a very modest increase in risk of each risk allele (odds
ratios: 1.1–1.2) (108). Even if attempts to identify enough
genetic variants were made, it remains unclear how such
information can be communicated and whether it will mo-
tivate people to adopt healthy lifestyles and to seek medical
interventions (109).

Diabetes risk scores demonstrated good discrimination in
the study populations in which they were derived. However,
their predictive value was usually reduced in external pop-
ulations. Studies that derive risk scores in one-half of the
cohort and validate them in the other half, or validate risk
scores in cohorts with very similar methodology (e.g., end-
point definition, exposure information collection) or source
populations, are likely to report better predictive abilities.
This might, for example, be true for scores developed and
validated in the FINRISK studies (Finnish Diabetes Risk
Score (51)) and the EPIC-Germany studies (German Diabe-
tes Risk Score (53)). Conversely, validating risk scores in
different populations and ethnic groups is likely to result in
relatively poorer performance, as has been observed for the
Finnish Diabetes Risk Score (55, 64–66).

Thus, risk prediction models should not be assumed to
perform comparably well but may rather need to be vali-
dated within the population in which they are intended to be

used, particularly if ethnicities and countries differ from the
derivation cohorts. Furthermore, reestimation of regression
coefficients for existing models may result in better perfor-
mance when models are evaluated in external populations
(71). It may also bemore useful to develop population-specific
risk prediction tools (103) rather than try to find a universal
risk score that will work in all populations. Although valida-
tion studies have been undertaken in the United States, Aus-
tralia, several European countries, India, and China, such data
are largely lacking from African, South-American, southern
and eastern European, and most Asian countries.

Information on sensitivities, specificities, and predicted
values is essential for deciding appropriate cutoffs based
on cost-benefit considerations. Such data were unavailable
for several prediction models identified in this review. Fur-
thermore, most evaluation studies did not assess model cal-
ibration. Thus, whether absolute risk is estimated accurately
remains unclear for most existing diabetes risk scores,
which has implications for the applicability of scores in
the context of prevention programs focusing on motivation
of individuals to change their behavior, where accurate es-
timation of absolute risk is necessary. Although modifiable
risk might be more informative than absolute risk in this
context, most evaluated risk scores are dominated by non-
modifiable factors such as age, sex, ethnicity, and family
history. Modifiable risk factors usually include measures
of obesity (body mass index, waist circumference) but, less
frequently, smoking and, rarely, others such as diet and
physical activity (51, 53, 58).

To our knowledge, this systematic review is the first to
assess the ability of risk scores to estimate risk of incident
type 2 diabetes in healthy individuals from general popula-
tions. Different definitions of the diabetes endpoint as well
as differences in follow-up time, source population, and
methods of collection and modeling of risk factors make it
difficult to compare the performance of risk scores. Further-
more, the majority of published diabetes prediction models
were not validated in independent studies, and, if a predic-
tion model was validated, the original risk model was fre-
quently modified. Although a variety of statistical
approaches were used to describe the performance of risk
models, they were mostly limited to a global measure of
discrimination (aROC). Identification of different prediction
models and extraction of model information was based on
tables and figures as well as on text in the results section of
papers. Although data were extracted independently by 2
reviewers and disagreement required consensus between
them, we cannot rule out the possibility that information
was falsely extracted or missed.

Methodological issues

Study design and population. Prediction models for in-
cident diabetes should be prospectively derived and vali-
dated in initially disease-free populations in observational
studies. Epidemiologists have generally used large-scale co-
hort studies for this purpose. However, some investigators
have used different approaches with weaker designs, for
example, without excluding prevalent cases at baseline
(35, 110). Evaluation of patients undergoing intervention
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(41, 111) frequently involves prescreening, which hampers
extrapolation to general populations. Furthermore, linking
the baseline risk factor profile to incidence is distorted by
the intervention. In addition, case-control designs have been
used to evaluate genetic markers as predictors of diabetes
(112, 113). This design might be appropriate to evaluate
genetic risk alone if controls and cases are population based.
However, case-control studies are hampered by several
sources of bias involved in analysis of lifestyle risk factors,
including differential reporting based on disease status (re-
call bias) and reverse causation, making it problematic to
evaluate genetic markers beyond lifestyle or metabolic risk
factors. Some investigators did not evaluate the performance
of risk prediction models in general population samples but
rather among individuals after an initial prescreening, for
example, individuals with a positive family history of di-
abetes (24) or prevalent impaired glucose tolerance (28).
Such studies did not meet our predefined inclusion criteria
and were thus excluded from our review.

Case definition. Several studies relied on self-reported
diabetes. The validity of self-reported data may distort rel-
ative risk estimates and corresponding prediction models,
particularly in the presence of false-positive self-reports.
This misclassification can be reduced if studies apply thor-
ough validation procedures. Although there might still be
misclassification present because of undiagnosed diabetes,
assuming this misclassification is not dependent on risk
factor status, this does not bias estimates of relative risk
(114). Still, false-negative self-reports may distort estimates
of discrimination and calibration.

Most studies used glucose screening to detect prevalent
cases at baseline and incident cases during follow-up.
Although undiagnosed diabetes might not be an issue in
such studies, the results of prediction models would apply
to similarly screened populations. Universal glucose screen-
ing, either fasting or by oral glucose tolerance test, is,
however, not presently carried out, so studies based on
self-reports only might more accurately reflect ‘‘real-world’’
conditions of diabetes diagnostics in general populations. In
addition, studies involving glucose measurements usually
base identification of cases on a single measurement, resulting
in false-positive screens (115, 116). Little is known about
whether the performance of risk scores depends on the method
of case identification. The Cambridge Risk Score (46) was
more strongly related to diabetes risk in the EPIC-Norfolk
study when prevalent and incident cases were identified based
on self-reports, clinical registers, and death certificates com-
pared with also using glycated hemoglobin measurements
(60). Perhaps even more important than choosing either self-
report only or additional glucose screening is that studies use
similar definitions of case status at baseline and at follow-up.

Model derivation. Modeling risk factors to derive predic-
tion models in cohort studies most frequently involved lo-
gistic regression, although some studies used Cox regression
models, which might better reflect the prospective nature of
these studies. Variables were usually retained in a prediction
model if they were significantly associated with diabetes
risk, a process highly dependent on statistical power. Some
investigators also considered variables that were not signif-
icant predictors (51).

Calculation of a graded risk score is usually based on the
set of chosen variables and corresponding beta-coefficients
from regression models. For example, beta-coefficients
from logistic or Cox regression models were used directly
or were transformed to assign points in the San Antonio
diabetes model (50), ARIC models (52), Framingham
Offspring model (54), EPIC-Norfolk risk score (59), Cam-
bridge Score (46), and German Diabetes Risk Score (53).
However, other investigators translated observed beta-
coefficients into relatively crude score points, not matching
observed weights from regression (51).

Choosing appropriate cutoffs to determine ‘‘high
risk.’’ The use of risk classification and reclassification is
based on the assumption that individuals should be stratified
into clinically relevant risk categories. This assumption
seems logical because screening for subpopulations is a pre-
requisite for the high-risk approach of prevention or for
selection of persons to include in clinical trials. One ap-
proach for selecting cutoffs is to base decisions on existing
thresholds above which risk increases sharply with increas-
ing risk factor profiles. Unfortunately, diabetes risk factors
generally do not provide evidence for such thresholds. For
example, although clinical categories for waist circumfer-
ence are in use, diabetes risk appears to increase with each
centimeter of waist circumference, even within the range of
values considered normal (45). The same applies to pre-
dicted risk estimates from more complex prediction models
such as diabetes risk scores. Thus, justification of cutoffs
based on observed risk associations is challenging.

Another approach for defining risk categories is based on
ROC curves: the pair of sensitivity and false-positive rates
closest to the upper left corner is considered optimal here
because the slope of the curve indicates that any cutoff
yielding higher sensitivity (benefit) would result in dispro-
portionally higher costs in terms of a false-positive rate, and
vice versa. This approach has been, in part, the rationale for
lowering the cutoff for impaired fasting glucose from 110
mg/dl to 100 mg/dl, for example (117).

National Cholesterol Education Program–Adult Treat-
ment Panel III guidelines consider different therapeutic ap-
proaches based on cost-effectiveness analyses for different
categories of absolute cardiovascular disease risk based on
the Framingham algorithm (118). These risk categories have
been the basis for evaluating reclassification after including
novel cardiovascular disease biomarkers (119, 120). How-
ever, it is clear that the cost-effectiveness of cholesterol-
lowering therapy increases with increasing baseline risk
(121) and may change depending on changes in drug costs,
efficacy of interventions, costs of treating new cases and
sequelae, or compliance characteristics of the population.
Thus, risk categories may satisfy clinicians’ requests for
thresholds to trigger certain interventions, but they are
largely arbitrary (122).

Furthermore, population-based screening for high-risk in-
dividuals might assign lower relative costs to false-positive
screens compared with clinical intervention studies, where
the primary goal might be to select individuals with a high
risk of developing diabetes within a relatively short time
period. For example, in the Diabetes Prevention Program,
only about 5% of those initially contacted were eligible for
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the intervention study after several steps of screening (105).
If population-based screening either is based on a simple
paper questionnaire only or also involves subsequent bio-
marker evaluation, such as fasting blood glucose, cutoffs
would need to be defined quite differently to yield similar
overall sensitivities.

These examples highlight the point that cutoffs for a di-
abetes risk score may vary greatly depending on the specific
objectives for using it and the related costs and benefit.
However, all these approaches require that sensitivities,
specificities, and predicted values for different potential cut-
offs for prediction models be known. The varying sensitiv-
ities and specificities associated with similar cutoffs across
different populations observed suggest that cost-benefit
analyses are uncertain unless the prediction model is vali-
dated within the specific population in which it is intended
to be used. Furthermore, regardless of screening and pre-
vention strategies for high-risk individuals, population-
based approaches targeting modifiable diabetes risk factors
such as physical activity, diet, obesity, and smoking should
be supported (123).

Conclusions

Computation of diabetes risk based on multivariate risk
models is useful in the context of targeting prevention in-
terventions to high-risk groups. Several risk scores have
been validated in independent populations, frequently show-
ing good discriminatory ability. However, discrimination is
generally lower than in the populations in which the scores
were developed, and the validation results are more hetero-
geneous. This finding suggests that risk scores should not
simply be expected to perform comparably well but rather
may need to be validated within the population in which
they are intended to be used. Data on whether risk scores
enable accurate estimation of absolute risk are largely lack-
ing from validation studies, which currently limits the use of
diabetes risk scores in the context of providing prognostic
information to individuals.

Risk scores based on noninvasive measurements can be
improved by adding commonly measured biochemical
markers, in particular, measures of glycemia. Thus, scores
based on noninvasive information—which might be available
from routine clinical data or collected by questionnaires—
should increasingly be used to identify individuals or
population subgroups that might benefit from more compre-
hensive risk assessment, for example, additional determina-
tion of blood glucose levels, or to even start directly with
preventive action. A stepwise stratification approach would
reduce the number of individuals requiring blood sampling.
However, the degree to which existing risk scores can be
improved by using novel biochemical markers or genetic
information is questionable.
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